(资料图)
本报北京4月5日电(记者晋浩天)北京大学邓宏魁研究组日前在国际学术期刊《细胞·干细胞》发表了题为《利用化学重编程高效快速制备人多潜能干细胞》的研究论文。该研究建立了新的化学重编程体系,更加快速和高效地将人成体细胞诱导为多潜能干细胞。
团队成员介绍,多潜能干细胞具有无限自我更新和分化成生物体所有功能细胞类型的能力,这些神奇的特质使其在细胞治疗、药物筛选和疾病模型等领域具有广泛的应用价值,是再生医学领域最为关键的“种子细胞”。如何在体外诱导获得多潜能干细胞一直是生命科学领域的关键科学问题。2013年,邓宏魁研究组在《科学》杂志发表了一项原创性成果,即不依赖卵母细胞和转录因子等细胞内源物质,仅使用外源性化学小分子就可以逆转细胞命运,将小鼠体细胞重编程为多潜能干细胞(CiPS细胞),开辟了一条全新的体细胞重编程的路径。2022年,邓宏魁研究组取得新突破,成功实现了利用化学小分子将人成体细胞诱导为多潜能干细胞(人CiPS细胞)。
生命的本质是化学过程,通过化学小分子调控细胞命运,理论上是最有效的方式。化学重编程与传统重编程技术存在本质区别:传统转基因重编程技术如诱导多潜能干细胞技术(iPS技术),是通过细胞内源转录因子的过表达,驱动细胞命运发生直接转变,其诱导过程难以控制;而化学重编程是利用外源的化学小分子模拟外界信号刺激,驱动细胞命运以分阶段的方式发生转变。因此,该方法可控性强,有望实现精准调控细胞命运、逆转细胞身份和功能状态,使逆向发育成为可能。
在这次最新研究成果中,邓宏魁研究组建立了一套更加快速、高效和稳定的人体细胞化学重编程方法。研究人员发现了新的化学小分子组合,大幅加快了重编程进程,诱导周期由原来的50天缩短到30天以内,最短16天即可完成诱导。与此同时,诱导效率大幅提升,最高可达31%。新体系在不同遗传背景、不同年龄的17名个体来源的体细胞上进行了测试,均可实现高效诱导,加速了人CiPS细胞在细胞治疗、药物筛选和疾病模型等方面广泛应用的步伐。
根据研究组先前报道,原有体系在诱导人CiPS细胞的过程中先后经历了类上皮细胞阶段、可塑性中间态细胞阶段、类胚外内胚层细胞(XEN-like)阶段,最终建立了多潜能干细胞。而该研究发现新体系更加快速和高效的分子机制:可塑性中间态细胞在增殖能力和氧化磷酸化代谢活性方面显著增强,不再经历XEN-like阶段,多能性基因激活更加快速,分子路径更加直接。特别重要的是,传统iPS重编程依赖逐步增强的糖酵解代谢过程,而化学重编程最为关键的阶段——可塑性中间状态的产生则依赖氧化磷酸化,并不依赖糖酵解代谢。这一发现,揭示了特定能量代谢途径对不同细胞命运转变过程的重要性,为从能量代谢的角度理解细胞命运调控机制提供了新视角。
此外,本研究建立的新诱导方案不仅快速、高效和稳定,更重要的是,该方案成分明确,不依赖血清,不依赖于饲养层细胞,这些属性更好地满足了临床应用的需求,为建立符合临床应用标准的人CiPS细胞系奠定了基础,使其向临床应用迈进了关键一步。与转基因过表达转录因子相比,化学小分子具有不整合基因组,作用可逆,操作简单等优势,因此CiPS技术更加安全、简单且易于标准化,具有广阔的临床应用前景。目前,邓宏魁研究组已利用人CiPS细胞高效制备了胰岛细胞,并在大动物模型上验证了其治疗糖尿病的安全性和有效性,凸显了人CiPS细胞作为“种子细胞”治疗重大疾病的临床应用价值。
X 关闭
Copyright © 2015-2032 时代纸业网版权所有 备案号: 联系邮箱: 514 676 113@qq.com